
Week 5 Part 2
Kyle Dewey

Sunday, July 29, 12

Overview

• Scope

• Lifetime

• Testing

• Exam #1 overview

Sunday, July 29, 12

What’s with the
{ ... }?

Sunday, July 29, 12

Recall
• Function definitions look like this:

void foo() { ... }

• Conditionals (if) look like this:

if (condition) { ... }

• while loops look like this:

while (condition) { ... }

Sunday, July 29, 12

Brackets

• The { ... } part is significant

• This is called a block

• Blocks have special meaning to C (and to
the vast majority of languages)

Sunday, July 29, 12

Blocks
• As we’ve already seen, blocks can be

nested:

void foo() {
 int x;
 for (x = 0; x < 10; x++) {
 if (x % 2 == 0) {
 printf(“Even: %i\n”, x);
 continue;
 }
 printf(“Odd: %i\n”, x);
 }
}

Sunday, July 29, 12

Blocks

• Importance of this lies in variable
declaration

• A block nested at level N has access to
variables defined at nesting levels 0 .. N - 1,
but not the other way around

Sunday, July 29, 12

Example

void foo() {
 int x = 10;
 if (x > 5) {
 int y = x * 4;
 // this block can access x
 }
 // ...but this block can’t access y
}

Sunday, July 29, 12

So what?

• This may seem obvious and/or insignificant

• This mechanism means that you don’t have
to worry about what was defined in inner
blocks, because they are inaccessible
anyway

Sunday, July 29, 12

Variable Name Reusage

• Blocks help to prevent variable names from
clashing

• A variable foo defined in a given block is
distinct from all other variables named foo
defined in other blocks

Sunday, July 29, 12

Example

int x = ...;

if (x < 10) {
 int y = 20;
} else {
 int y = 30;
}

Distinct variables

Sunday, July 29, 12

Variable Name Reusage

• Consider the following code:

int x = ...;

if (x < 10) {
 int x = 20;
} else {
 int x = 30;
}

Name (x) Reused

Sunday, July 29, 12

Variable Name Reusage
• The original variable x does not change

• The old definition is shadowed by the
new one, not overwritten

int x = ...;

if (x < 10) {
 int x = 20;
} else {
 int x = 30;
}

Sunday, July 29, 12

Question

• What does this code print?

int x = 10;
if (x == 10) {
 int x = 5;
 printf(“%i\n”, x);
}
printf(“%i\n”, x);

Sunday, July 29, 12

Block Advantage

• Focus only on one block at a time, not on
previous blocks

• Variables defined in previous blocks are
shadowed

Sunday, July 29, 12

Scope

• Scope defines which variables can be
accessed at any given point in the code

• Blocks manipulate the scope

if (1 < 2) {
 int x = 5;
 // x is now in scope
}
// x is no longer in scope

Sunday, July 29, 12

Scope Example
int x = 10;
// x is now in scope

if (1 < 2) {
 int x = 5;
 // x is in scope, but it
 // refers to the x = 5 definition
}

// x is in scope, but it refers to
// the x = 10 definition

Sunday, July 29, 12

Lifetime

• How long a variable exists in your program
is the variable’s lifetime

• Scope is not the same as lifetime

• Scope: when you can access a variable

• Lifetime: whether or not a variable is
there

Sunday, July 29, 12

Scope vs. Lifetime

• A variable in scope is necessarily alive

• A variable that’s alive is not necessarily in
scope

Sunday, July 29, 12

Example #1

int x = ...; // alive and in scope
if (x < 10) {
 int y = 5; // alive and in scope
 ...
}
// y is not in scope and not alive

Sunday, July 29, 12

Example #2
int x = ...; // alive and in scope
if (x < 10) {
 int y = 5; // x and y are alive

 // and in scope
 if (x < y + 5) {
 int z = 20;
 // x, y, z alive and in scope
 }
 // x, y alive and in scope
}
// x alive and in scope

Sunday, July 29, 12

Example #3
int x = ...; // alive and in scope
if (x < 10) {
 int x = 5; // x = ... is alive

 // but not in scope
 // x = 5 alive in scope

 if (x < y + 5) {
 int x = 20;
 // x = ... and x = 5 alive
 // only x = 20 is in scope
 }
 // x = ... and x = 5 alive
 // only x = 5 in scope
}
// x = ... alive and in scope

Sunday, July 29, 12

Example #4
void bar() {
 // y is alive but not in scope
 int z = 5;
}

void foo() {
 int y = 10;
 bar();
}

void main() {
 foo();
}

Sunday, July 29, 12

Global Variables

• Consider the following code:

int x = 10;

void foobar() {
 printf(“%i\n”, x);
}

void barfoo() {
 x++;
}

Sunday, July 29, 12

Global Variables
• x is a global variable

• Always in scope (unless shadowed)

• Always alive

int x = 10;

void foobar() {
 printf(“%i\n”, x);
}

void barfoo() {
 x++;
}

Sunday, July 29, 12

Thought Question

• Global variables are seen as bad practice,
and are usually avoided

• Why?

Sunday, July 29, 12

Answer

• Always in scope and always alive means
everything in the file probably heavily relies
on it

• Another variable to keep track of for
everything in the file

• Can be error prone

• Interdependent code

Sunday, July 29, 12

Aside: “In the File”

• Technically a “compilation unit”

• In this class, a file is a compilation unit

• However, it’s possible to have multiple files
in the same compilation unit

Sunday, July 29, 12

Testing

Sunday, July 29, 12

Recall...

• Testing is an important step in software
development

• Builds confidence that code works
correctly

• Modern software development heavily
relies on testing

Sunday, July 29, 12

Testing

• Testing can confirm a bug exists

• ...but it cannot confirm that bugs do not
exist

• May not be testing for it

• May need additional tests

Sunday, July 29, 12

Testing Weakness
int badMax(int x, int y) {
 if (x == 513) {
 return x;
 } else if (x > y) {
 return x;
 } else {
 return y;
 }
}

Sunday, July 29, 12

Testing Strength

• Code is not usually written like that

• The goal is not to mess up the tests

• Simple (compared to verification, which
attempts to prove that there are no bugs)

Sunday, July 29, 12

Additional Terminology

• White box testing: you can see the whole
code, as with:

// get the max of x and y
int max(int x, int y) {
 if (x > y) {
 return x;
 } else {
 return y;
 }
}

Sunday, July 29, 12

Additional Terminology

• Black box testing: you can see only the
interfaces and what they do, as with:

// get the max of x and y
int max(int x, int y);

Sunday, July 29, 12

Exam #1 Overview

Sunday, July 29, 12

